P-type semiconductor - Definition. Was ist P-type semiconductor
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist P-type semiconductor - definition

ONE THAT HAS BEEN DOPED, THAT IS, INTO WHICH A DOPING AGENT HAS BEEN INTRODUCED, GIVING IT DIFFERENT ELECTRICAL PROPERTIES THAN THE INTRINSIC (PURE) SEMICONDUCTOR
P-type semiconductor; N-type semiconductor; P-type crystals; N-type crystals; P-type silicon; N-type silicon; N-type (semiconductor); P-type (semiconductor); P-type doping

Extrinsic semiconductor         
An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor. In an extrinsic semiconductor it is these foreign dopant atoms in the crystal lattice that mainly provide the charge carriers which carry electric current through the crystal.
Intrinsic semiconductor         
PURE SEMICONDUCTOR WITHOUT ANY SIGNIFICANT DOPANT SPECIES PRESENT
I-type semiconductor; Undoped semiconductor
An intrinsic (pure) semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.
PMOS logic         
  • PMOS clock IC, 1974
  • PMOS [[NAND gate]] with load resistor.
  • PMOS  [[NOR gate]] with load resistor.
  • inverter]] with load resistor.
P-TYPE MOSFETS TO IMPLEMENT LOGIC GATES
P-type Metal-Oxide-Semiconductor; P-MOS; P-type MOS
PMOS or pMOS logic (from P-channel metal–oxide–semiconductor) is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

Wikipedia

Extrinsic semiconductor

An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor. In an extrinsic semiconductor it is these foreign dopant atoms in the crystal lattice that mainly provide the charge carriers which carry electric current through the crystal. The doping agents used are of two types, resulting in two types of extrinsic semiconductor. An electron donor dopant is an atom which, when incorporated in the crystal, releases a mobile conduction electron into the crystal lattice. An extrinsic semiconductor which has been doped with electron donor atoms is called an n-type semiconductor, because the majority of charge carriers in the crystal are negative electrons. An electron acceptor dopant is an atom which accepts an electron from the lattice, creating a vacancy where an electron should be called a hole which can move through the crystal like a positively charged particle. An extrinsic semiconductor which has been doped with electron acceptor atoms is called a p-type semiconductor, because the majority of charge carriers in the crystal are positive holes.

Doping is the key to the extraordinarily wide range of electrical behavior that semiconductors can exhibit, and extrinsic semiconductors are used to make semiconductor electronic devices such as diodes, transistors, integrated circuits, semiconductor lasers, LEDs, and photovoltaic cells. Sophisticated semiconductor fabrication processes like photolithography can implant different dopant elements in different regions of the same semiconductor crystal wafer, creating semiconductor devices on the wafer's surface. For example a common type of transistor, the n-p-n bipolar transistor, consists of an extrinsic semiconductor crystal with two regions of n-type semiconductor, separated by a region of p-type semiconductor, with metal contacts attached to each part.